Mechanisms, assessment and therapeutic implications of lung hyperinflation in COPD

Andrea Rossi a,b, Zaurbek Aisanov c,d, Sergey Avdeev d,e, Giuseppe Di Maria f,g, Claudio F. Donner h,i, José Luis Izquierdo j,k, Nicolas Roche l, Thomas Similowski m,n, Henrik Watz o, Heinrich Worth p, Marc Miravitlles k,q,*

a Pulmonary Unit, General Hospital, University of Verona, Italy
b Associazione Italiana Pneumologi Ospedalieri (AIPO), Italy
c Clinical Physiology Department, Pulmonology Research Institute, Moscow, Russia
d Russian Respiratory Society (RRS), Russia
e Clinical Department, Pulmonology Research Institute, Moscow, Russia
f Department of Clinical and Molecular Bio-Medicine, University of Catania, Italy
g Società Italiana di Medicina Respiratoria (SIMeR), Italy
h Mondo Medico, Multidisciplinary and Rehabilitation Outpatient Clinic, Borgomanero (No), Italy
i Associazione Scientifica Interdisciplinare per lo Studio delle Malattie Respiratorie (AIMAR), Italy
j Pneumology Department, Hospital Universitario de Guadalajara, Universidad de Alcalá de Henares, Spain
k Spanish Society of Pneumology and Thoracic Surgery (SEPAR), Spain
l Respiratory and Intensive Care Medicine, Cochin Hospital Group, Val-de-Grâce Hospital, University Paris Descartes (EA2511), Paris, France
m Groupe Hospitalier Pitie-Salpêtrière Charles Foix, Service de Pneumologieet Réanimation Médicale (Département "R3S"), F-75013 Paris, France
n INSERM and UPMC, Univ Paris 06, UMR_S 1158, "Neurophysiologie Respiratoire Expérimentale et Clinique", Paris, France
o Pulmonary Research Institute at Lung Clinic Grosshansdorf, Airway Research Center North, German Center for Lung Research, Grosshansdorf, Deutsche Gesellschaft fuer Pneumologie und Beatmungsmedizin, Germany
p Departments of Pneumology and Cardiology, Hospital Fürth, University Erlangen-Nürnberg, Fürth, Deutsche Gesellschaft fuer Pneumologie und Beatmungsmedizin, Deutsche Atemwegsliga, Germany
q Pneumology Department, Hospital Universitari Vall d’Hebron, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain

Received 8 August 2014; accepted 23 March 2015
Available online 3 April 2015
Summary
The main complaint of patients with chronic obstructive pulmonary disease (COPD) is shortness of breath with exercise, that is usually progressive. The principal mechanism that explains this symptom is the development of lung hyperinflation (LH) which is defined by an increase of functional residual capacity (FRC) above predicted values. Patients with COPD may develop static LH (sLH) because of destruction of pulmonary parenchyma and loss of elastic recoil. In addition, dynamic LH (dLH) develops when patients with COPD breathe in before achieving a full exhalation and, as a consequence, air is trapped within the lungs with each further breath. Dynamic LH may also occur at rest but it becomes clinically relevant during exercise and exacerbation. Lung hyperinflation may have an impact beyond the lungs and the effects of LH on cardiovascular function have been extensively analysed.

The importance of LH makes its identification and measurement crucial. The demonstration of LH in COPD leads to the adoption of strategies to minimise its impact on the daily activities of patients. Several strategies reduce the impact of LH; the use of long-acting bronchodilators has been shown to reduce LH and improve exercise capacity. Non pharmacologic interventions have also been demonstrated to be useful. This article describes the pathophysiology of LH, its impact on the lungs and beyond and reviews the strategies that improve LH in COPD.

© 2015 Elsevier Ltd. All rights reserved.
Introduction

Chronic obstructive pulmonary disease (COPD) is estimated to affect 10% of the population aged 40 years or more [1]. It represents a great burden to individuals and society in terms of medical expenses, mortality and disability [2]. The main characteristic of COPD is the inability of patients to cope with their daily life activities because they are limited by shortness of breath. The mechanisms underlying limitations in activity and dyspnoea are complex, but the development of lung hyperinflation (LH) plays a central role in the pathophysiology of dyspnoea and poor exercise tolerance in patients with COPD [3]. LH has a static component, which is the consequence of destruction of pulmonary parenchyma and loss of lung elastic recoil, and a dynamic component, which occurs when patients with COPD breathe in before achieving a full exhalation. The major consequence of LH is the association of the increased ventilatory workload and the decreased inspiratory muscle pressure generating capacity, despite some compensatory mechanisms [4].

Lung hyperinflation may have an impact beyond the lungs. It has the potential for significant adverse effects on cardiovascular function [5,6]. Therefore, assessment of the presence and severity of LH is a useful clinical approach to assess the impact of therapeutic interventions on symptoms, exercise tolerance and health-related quality of life.

Due to the relevance of LH in COPD, representatives of scientific societies from five European countries have developed this document covering crucial aspects of mechanisms, diagnosis and management. The aim of this document is to highlight the key aspects of this important concept and help practising physicians to understand the principles and practice of LH treatment in COPD.

Definitions and pathophysiology

The Functional Residual Capacity (FRC), which is the expression of LH, is defined as the volume of gas in the lungs and airways at the end of a tidal expiration [7,8]. Under normal circumstances, the elastic energy stored in the respiratory system during the preceding inspiration is sufficient to fully breathe out the inspired gas. Hence, FRC is determined by the opposing elastic forces of the lungs (inward) and the chest wall (outward), such that it corresponds to the static equilibrium volume of the total respiratory system. This "relaxed FRC" has also been termed V_r (relaxation volume) [9]. At V_r, alveolar pressure is equal to atmospheric pressure.

Lung hyperinflation is defined by an abnormal increase of the amount of gas in the lungs and airways at the end of the tidal (spontaneous) expiration, establishing FRC above the upper 95th percentile of the predicted values [9–11].

Conventionally, LH is at times defined as an increase in total lung capacity (TLC) > 120% of the predicted value regardless of the underlying mechanisms [12]. We believe that this definition should be avoided and FRC should be used. However, we agree that in the absence of any consensus definition, the volume compartment referred to (i.e. TLC or FRC) and the method used for measurement should be specified [12]. It might also be useful to specify FRC_{He} when using the He-dilution technique or FRC_{pleth} when the plethysmographic technique is used [11].

According to the underlying mechanisms, LH is classified as "static" or "dynamic".

Static lung hyperinflation

Static lung hyperinflation (sLH) is determined by a modification of the elastic properties of the respiratory system due to a decrease of the inward elastic recoil of the lungs without changes of the elastic properties of the chest wall [8]. The most common cause of sLH is, by far, pulmonary emphysema, a disease characterized by destruction of lung parenchyma in both the panlobular and centrolobular types. The reduction of elastic fibres leads to displacement of the volume—pressure curve of the lungs leftward and upward while the elastic properties of the chest wall remain basically unchanged [13]. However, in experimental animals, there is an upward shift of the volume—pressure curve of the relaxed chest-wall such that the volume of the chest wall at any given pressure is increased, but the slope of the relationship (chest wall compliance) remains unchanged [13,14]. Hence, the static/elastic equilibrium point of the total respiratory system is moved at a higher than normal lung volume and FRC is permanently increased. Of note, the increased FRC still corresponds to the modified static equilibrium of the respiratory system ($FRC = V_r$), and alveolar pressure is equal to atmospheric pressure.

Residual volume (RV) is also increased in emphysema/COPD because of premature closure of the small airways in the dependent lung regions, a feature otherwise known as "gas/air trapping" [9,15,16]. This occurs early in COPD as a result of a combination of small airways closure and extreme expiratory flow limitation at low lung volume. The increase in TLC, in part, from the loss of lung recoil and, in part, from the increase in RV. With the progression of the disease, the rise in RV becomes greater than the increase in TLC (higher RV/TLC ratio), leading to a fall in VC and an ensuing FEV$_1$ fall [15].

Dynamic lung hyperinflation

Dynamic lung hyperinflation (dLH) is defined as an increase of FRC above the relaxed respiratory volume (V_r) because of dynamic forces [8,17–21]. In synthesis, dLH results from the discrepancy between the (a) volume to exhale, and (b) the time needed for a complete exhalation to V_r, and (c) the expiratory time constant of the respiratory system, on one hand, and the time actually available between two consecutive inspiratory efforts, on the other hand.

The distinction between sLH and dLH is important because the two phenomena have different clinical consequences and therapeutic implications. For example, dLH is tightly linked to dyspnoea and exercise tolerance while sLH is not. To avoid misleading terminology, in the present document, we use V_r to define the static equilibrium volume of the respiratory system and FRC to identify the volume at the end of a tidal expiration. With sLH, $FRC = V_r$, while with dLH, $FRC > V_r$. It should be mentioned that sLH should not be confused with "resting FRC". In fact, FRC may also vary with changes in the frequency of breathing in
normal patients and slight amounts of dLH have consistently been found in COPD patients at rest (see below). The definitions of LH used in this article are summarized in Table 1.

Mechanisms leading to dynamic lung hyperinflation

While sLH is basically the consequence of the pathologic changes in the lungs, different mechanical causes determine the elevation of FRC above \(V_r \), i.e. dLH: A) Decreased driving pressure for expiration, due to the reduced elastic recoil of the lungs. B) Increased airflow resistance, causing longer time constant(s). C) Expiratory flow limitation, that occurs because of the excessive compressibility of the small airways due to the destruction of the supporting alveolar attachments. Ventilation at higher lung volume, as a consequence of sLH, can lead to a positive intrathoracic pressure during expiration due to the inward recoil of the chest wall. This helps the pressure driving expiratory flow on one hand, but compresses the small airways on the other hand [22,23]. It is likely that the latter overpowers the former by impairing the expiratory flow rate. D) High inspired volume during mechanical ventilation or exercise. This condition is not common in spontaneously breathing subjects (with the notable exception of exercise and anxiety-related hyperventilation), but it can occur in mechanically ventilated patients when excessive tidal volume are administered (controlled or assist-controlled ventilation) or when pressure support is too high (overassistance) [24]. It is also of note that in mechanically ventilated patients, expiration is further impaired by the airflow resistance of the endotracheal tube or the tracheal cannula. E) High frequency of breathing. This condition may occur during both spontaneous breathing (also in normal subjects) and assisted modes of mechanical ventilation. A short expiratory time (TE) can impair a complete exhalation to \(V_r \), if an abnormally long time is needed to exhale.

Dynamic LH is not uniform in all patients, so that the detection of the presence of LH can help to improve phenotypic characterization, and thereby helping to provide treatment more adapted to the patient's characteristics. It has been shown that not all COPD patients hyperinflate during exercise [25]. Most patients do, but a minority of patients contrast dLH by contracting the expiratory muscles. These patients have been defined as "non-hyperinflators" whereas "hyperinflator" refers to COPD patients, the majority of whom exhibit dLH during exercise. However, it has recently been observed that dLH occurs in moderate-to-severe COPD patients during exercise despite increased expiratory muscle activity [26].

Consequences of lung hyperinflation related to respiratory mechanics, gas exchange, and cardiopulmonary interaction

Static LH increases the workload to breathe through the increase of the elastic load at high lung volume, while it simultaneously decreases the pressure generating capacity of inspiratory muscles through the unfavourable geometric arrangement [27]. Dynamic LH further displaces ventilation at higher lung volume while setting the inspiratory threshold load and further worsening the inspiratory muscle geometrical arrangement and effectiveness. This negative synergy is a major determinant of dyspnoea and can lead to ventilatory failure. The consequences of LH are as follows: A) Increased elastic load. The volume–pressure curve of the respiratory system flattens at high lung volume, meaning that a greater effort is needed to produce a given tidal volume [22,23]. B) Inspiratory threshold load. When dLH occurs, the expiratory alveolar pressure remains positive throughout expiration until the new inspiratory effort occurs. Under these circumstances, the contracting inspiratory muscles must overcome the end-expiratory positive alveolar pressure (auto-intrinsic PEEP = PEEPi) before negative pressure can be created in the central airways to generate inspiratory flow [17–21]. PEEPi increases the energy cost of breathing, and it does so in a "wasted" manner because the energy spent by contracting the inspiratory muscles to counterbalance PEEPi does not generate inspiratory flow. A considerable amount of literature has shown that PEEPi is present at rest in patients with advanced COPD [20,21,28,29] and that it increases remarkably during exercise and exacerbation [30,31]. C) Decreased inspiratory muscles pressure generating capacity due to shortened fibres and decreased area of diaphragm apposition [24]. Furthermore, at a high volume distortion of the rib cage occurs due to the greater activity of the intercostal muscles [27]. Although cellular adaptation phenomena occur [32], the pressure generating capacity of the diaphragm remains impaired, though less than predicted [33]. At this point it is noticeable that respiratory muscle blood flow is impaired by intrinsic PEEP and dLH [34]. D) Impaired gas exchange. dLH is not a homogeneous phenomenon among lung regions [20]. Different time constants are distributed among different regions of the lungs according to the different presence of small airways and parenchymal pathologic

Table 1 Definitions of lung hyperinflation (LH).

Functional Residual Capacity (FRC)	The amount of gas in the lungs and airways at the end of spontaneous expiration.
Relaxation or static equilibrium volume (Vr)	The volume at which the elastic recoil pressure of the respiratory system is zero.
Lung Hyperinflation (LH)	An increase of FRC above the upper 95th percentile of the normal predicted values.
Static lung hyperinflation (sLH)	An increase of FRC above the upper 95th percentile of the normal predicted values, at a volume at which the elastic recoil pressure of the respiratory system is zero.
Dynamic lung Hyperinflation (dLH)	A situation where FRC stands above Vr because the duration of expiration is insufficient for deflating lungs to reach Vr prior to the next inspiratory effort, and, as a result, the elastic recoil pressure of the respiratory system is no longer zero but becomes positive.
abnormalities and to the position, i.e. dependent vs. non-dependent lung regions [20]. This leads to ventilation–perfusion mismatching, eventually leading to hypoxemia [35–37]. CO₂ retention may also be a consequence of dLH. Briefly, the combination of increased mechanical workload with decreased inspiratory muscles pressure generating capacity determines a condition of inspiratory muscles pending fatigue, leading to rapid shallow breathing that is a very inefficient ventilatory pattern for CO₂ removal, such that hypercapnia ensues and respiratory acidosis may occur [31]. E) Impaired cardiovascular-pulmonary interaction. Great negative intrathoracic pressures swings during inspiration and positive intrathoracic pressure during expiration markedly impair cardiovascular function [38]. F) Mechanical volume restriction. As a consequence of dLH, VT expands to occupy most of the IC and IRV reaches its minimal value in the face of an increasing central drive. By increasing resting IC, bronchodilators release VT restriction and delay mechanical limitations [12].

Clinical importance of lung hyperinflation

Relationship between lung hyperinflation and dyspnoea

Dyspnoea is defined as “a subjective experience of breathing discomfort that consists of qualitatively distinct sensations [or sensory modalities, including increased breathing work/effort, air hunger, and chest tightness] that can vary in intensity [39]”. Like pain, dyspnoea is a multidimensional symptom that combines a sensory dimension (perception of abnormal respiratory-related stimuli, or "respiratory sensations") and an affective dimension (emotion associated with the respiratory sensations) [39–41]. Depressive responses can ensue, depending on the magnitude of the dyspnoea-related alterations of lifestyle and the capacity of the dyspnoeic person to cope with these changes [39,40]. In COPD, dyspnoea is frequent, and grows in severity with disease progression. Exercise-related dyspnoea is a major driver of COPD-related impairment in quality of life, together with exacerbations [41]. Dyspnoea belongs to many COPD-relevant prognostic indexes [42–44]. In addition, the mere existence of dyspnoea has a strong negative prognostic value [45]. Schematically, dyspnoea occurs when there is an imbalance between the intensity of the neural drive to breathe and the intensity and nature of the information that the respiratory system sends back to the brain in response to the motor command [39]. In other words, if a strong mechanical load due to bronchopulmonary alterations is not overcome by an adequate respiratory muscle response, the corresponding respiratory sensations will be associated by the brain with a negative emotion (e.g. fear, anxiety, depression, frustration ...), which defines dyspnoea [39]. This is precisely what occurs during acute dLH in COPD, be it induced by exercise, an exacerbation, or any other cause of hyperventilation (like anxiety). With the rapid increase in FRC that defines dLH, the sensory traffic to the brain increases because of the increased elastic and threshold loads. This is answered by an increased motor drive, but at the same time, LH shortens the diaphragm and other respiratory muscles that become less apt to generate the pressure needed to overcome the load. This results in the neural drive versus sensory information described above, hence dyspnoea. Of note, the nature of exercise-related dyspnoea in COPD is related to the degree of exercise-induced dLH [46,47]: at the beginning of an exercise test, COPD patients mostly report an “excessive inspiratory effort” sensation; with the rapid constitution of dLH, the sensation changes to “air hunger”. This occurs roughly when the inspiratory reserve volume is 0.5 L or less. This is important because “air hunger” is more strongly associated with negative emotions than “excessive work/effort” [48].

In COPD patients, dyspnoea correlates poorly with FEV₁ [49] and better with dLH [50]. Abundant literature during the last decades has related dLH to dyspnoea and has made reducing dLH a valid therapeutic target to alleviate dyspnoea. This is believed to be the main mechanism through which bronchodilators are effective in COPD-related dyspnoea. Bronchodilators likely have a predominant effect on the sensory dimension of dyspnoea and less effect on its affective dimension. However, certain interventions can alleviate COPD-related dyspnoea without obvious effects on dLH (e.g prolonged exercise time in response to the administration of opioids [51], or positive effects of rehabilitation on dyspnoea [52]). These effects might be mediated by a modulation of the affective dimension of dyspnoea.

Relationship between lung hyperinflation and exercise

As a key physiological hallmark of COPD, dLH significantly contributes to exertional dyspnoea and exercise limitation [53,54]. The combination of greater tidal volume and shorter time to exhale leads to dLH, which cannot be definitely predicted by the severity of baseline FEV₁ impairment [55]. In fact, under any condition of increased ventilation in flow-limited patients, inspiratory volume increases because of the greater central stimulation while the available expiratory time decreases because of the higher ventilatory frequency. Physiologically, initial sLH in severe COPD patients may suppress the development of dLH. In these terms, exertional dyspnoea requires further diagnostic testing [25]. It has been shown that dLH may occur even in subjects with symptomatic GOLD I COPD [56,57]. This is not surprising in view of the well known pathologic changes in the small airways preceding clinically overt spirometric impairment [15]. Nevertheless, in established COPD, dLH displaces ventilation on the upper flat portion of the VP relationship of the respiratory system such that the end-inspiratory tidal volume approaches TLC thereby inhibiting any further increase in ventilation, unless the breathing frequency is further increased. This, in turn, worsens dLH leading to rapid shallow breathing and pending CO₂ retention, as occurs in acute on chronic respiratory failure. Stable COPD patients, stop exercise when dLH pushes the end-inspiratory volume too close to TLC [12,53].

In order to diagnose dLH two basic methodologies can be used: A) Serial measurements of IC to detect its changes,
assuming stability of total lung capacity (TLC), and considering decreased IC as a reciprocal surrogate marker of increased FRC [17,58,59]. Contrarily to the ability of healthy subjects to completely exhale elevated tidal volumes by recruiting expiratory muscles and increasing expiratory flow, patients with COPD cannot overcome expiratory flow limitation (EFL) to complete exhaling the elevated tidal volume. Consequently, this leads to a decrease in IC followed by an elevation of FRC during exercise [60]. These measurements are directly dependent on the accuracy of IC assessment during rest and exercise. Today, there are no conventional recommendations for performing IC manoeuvres during exercise, data analysis and interpretation, however useful practical suggestions can be found elsewhere [59].

Relationship between lung hyperinflation and exacerbations

The definition of exacerbation is based on acute respiratory symptoms. However, a few studies support the conclusion that a worsening in symptoms is somehow associated with some worsening in lung function. Seemugal et al. [64] reported data from a cohort of COPD patients who had received a diary card and a peak flow meter; a minority of these patients also received a hand-held spirometer for measurement of FEV$_1$ and FVC. PEF fell rapidly at the beginning of the exacerbation and recovered slowly during the following month; FEV$_1$ and FVC also deteriorated with the worsening of symptoms and recovered slowly afterwards. Parker et al. [65] studied a small group of COPD patients referred to a tertiary care hospital because of an exacerbation and respiratory failure, treatment of dLH is needed to resume the ability of spontaneous ventilation. In the past, several measurements were performed in sedated and paralyzed COPD patients receiving controlled mechanical ventilation [67]. Using the technique described by Kimball et al. [68], the patient was disconnected from the ventilator, allowing full relaxed exhalation to V_t. Although the results were dependent not only on the pathophysiology of the underlying pathologic condition, but also on the ventilatory pattern set by the ventilator, it was consistently found that FRC was up to more than 1 L above V_t [69–71]. After the pioneering observation by Pepe and Marini [72] in three ventilator-dependent patients, it was found that a positive end-expiratory alveolar pressure, measured by an end-expiratory airway occlusion and termed intrinsic auto-PEEP (PeeP), was systematically associated with dLH, reaching values of up to more than 10 cmH$_2$O [69–72]. Clearly, the amount of PEE above V_t depends upon the elastic properties of the respiratory system, i.e. stiff versus compliant. For a similar value of PEE, dLH is greater in a compliant system rather than in one that is stiff.

In ventilator-dependent COPD patients, PEEP and dLH must always be suspected and their measurement should be part of the routine assessment of respiratory function. In fact, the presence of excessive dLH may explain unpredicted hemodynamic instability, poor patient-ventilator interaction, and difficult weaning. Adequate changes in both the ventilator setting and in the medical treatment may contribute to decrease dLH and PEEP, hence improving the patient’s condition and prognosis.

In summary, exacerbation of COPD is associated with deterioration in lung function in general, and with an increase of dLH in particular, in both normocapnic and hypercapnic episodes. Adequate treatment of dLH relieves dyspnoea and improves VC and IC, reflecting a reduction in VR (less air trapping) and in FRC (less LH). In patients with exacerbation and respiratory failure, treatment of dLH is needed to resume the ability of spontaneous ventilation following resolution of the acute episode [73].

Extrapulmonary consequences of lung hyperinflation

Hypermation, intrathoracic hypovolemia and cardiac dysfunction

Studies performed almost 30 years ago indicated a link between dLH and cardiac dysfunction in patients with COPD [74–76]. In patients with severe COPD and normal cardiac function at rest, the rise in FRC during tachypnoea was associated with an increase in right atrial pressure, mean pulmonary artery pressure, and wedge pressure, which was associated with a 10% increase of the left lateral lobe area...
on lateral chest X-rays. By contrast, a change in right atrial pressure during tachypnoea in control subjects did not reflect that of the left atrium in extent or direction. The authors concluded that raised wedge pressure in COPD on exercise or tachypnoea is partly due to a rise in pressure in the cardiac fossa associated with lower lobe gas trapping [75]. Of interest, 20 years later the results of the "National Emphysema Treatment Trial" showed that lung volume reduction surgery was associated with a decrease in wedge pressure [77].

Echocardiographic studies have revealed abnormal left ventricular diastolic function in patients with severe COPD [78–80]. Funk and colleagues investigated whether left ventricular diastolic dysfunction in COPD might be the result of an increased right ventricular afterload with ventricular interdependence leading to left ventricular diastolic changes [79]. They found left ventricular diastolic dysfunction to also be present in COPD patients with normal pulmonary artery pressure, suggesting a relationship between lung function and left ventricular diastolic function independently of right ventricular pressure [79]. It is of note that the 6-min walk distance and physical activity are reduced in those patients with concomitant left ventricular dysfunction compared to COPD patients without left ventricular dysfunction [5,6,80].

Jørgensen et al. [81–83] studied a group of patients with severe emphysema before and after lung volume reduction surgery by means of echocardiography, pulmonary artery thermodilution catheter, and magnetic resonance imaging (MRI). They observed that the left ventricle in patients with severe emphysema is hypovolicemic, which results in an impaired stroke volume index on hemodynamic measurements [83]. Furthermore, echocardiographic parameters of left ventricular dimensions and left ventricular diastolic filling improved after lung volume reduction surgery [81]. Finally, with MRI they were able to confirm that a reduced intrathoracic blood volume resulted in smaller end-diastolic dimensions of the right and left ventricle, which had an impact on cardiac performance [82]. The authors speculated that hyperinflated lungs in emphysema result in intrathoracic hypovolemia and a decreased biventricular preload [82]. Conversely, a small heart size was shown to be a radiological indicator of emphysema on chest-X ray in patients with COPD [84].

Recently, an epidemiological study performed in 2816 subjects from the general population evaluated the relationship between cardiac function and dimensions, as assessed by cardiac MRI, and the extent of CT-emphysema [85–87]. It was found that an increase in the extent of emphysema is associated with impaired left ventricular filling [85]. A similar relationship was observed between airflow obstruction and cardiac parameters of left ventricular filling and performance. On average, lung function of the study participants was normal and only 7% of the study participants had either self-reported COPD, emphysema, or chronic bronchitis [85]. A subsequent analysis of this study revealed that the percent emphysema was inversely related to right ventricular volumes and right ventricular stroke volume [86]. Finally, a recent analysis of a small subgroup of 165 patients with confirmed COPD participating in the same study revealed that pulmonary vein dimensions were reduced compared with controls, the pulmonary vein dimensions being inversely associated with the percent emphysema [87].

Only a few studies have analysed the impact of LH on cardiac function and cardiac dimensions. Vassaux et al. [88] showed that the IC/TLC ratio is associated with lower oxygen pulse as a non-invasive surrogate of stroke volume and global cardiac function on cardiopulmonary exercise testing. Of interest, both lung volume reduction surgery and lung deflation by tiotropium demonstrated that oxygen pulse increases following interventions in patients with COPD [89,90]. Watz et al. [6] showed the relationship between LH and various preload dependent echocardiographic parameters of right and left ventricular function along with the association of LH with cardiac chamber size on echocardiography in patients with COPD. Summarizing the currently limited evidence, it is fair to conclude that LH might be one of major factors impairing cardiac function in COPD.

Hyperinflation and skeletal muscle dysfunction

Muscle dysfunction often occurs in respiratory and peripheral muscles in all stages of COPD [91,92]. Lung hyperinflation has a pivotal role in respiratory muscle dysfunction as it places the respiratory muscles at a mechanical disadvantage [92]. However, the contractile strength of the diaphragm is preserved, which seems to be the result of persistent involuntary training secondary to the increased work of breathing [92]. Consequently, the diaphragm adapts by remodelling with a relative increase of the fatigue-resistant type I muscle fibres [33,92]. Other respiratory muscles also show similar changes [92].

It seems that muscle deconditioning is the main driver of peripheral muscle dysfunction in COPD [91,92]. Accordingly, most microscopic and molecular changes of the peripheral muscles can be explained by the disuse of the locomotor muscles of the lower limbs [92]. Muscle disuse is the result of dyspnoea on exertion during daily life activities and dLH has been demonstrated to be a major contributing factor of physical inactivity in patients with COPD [93]. Therefore, even though indirectly related, it seems that LH not only has a pivotal role in respiratory muscle dysfunction but also in peripheral muscle dysfunction.

Assessment of lung hyperinflation

Lung hyperinflation can be suspected in patients with severe COPD by physical examination, though it is of limited value in mild to moderate disease. There are some methods suitable for measuring LH in clinical practice.

Physical examination

The classic sign of LH is the *barrel chest* deformity, which has long been described as a sign of "emphysema" [9]. Barrel chest refers to an increase in the anteroposterior chest diameter, but besides LH it can be linked to other factors (age, etc.), and in the end, the sensitivity and specificity of this sign are not satisfactory. The *Hoover sign* consists in the paradoxical inward motion of the lower

Assessment and therapeutic implications of LH in COPD 791
lateral rib cage during inspiration. It has been attributed to
direct traction by the flattened diaphragm on the lateral rib
margins. The Hoover sign is easy to recognize, but it has
relatively high interobserver variability [94]. Thoracoabdominal asynchrony consists of a paradoxical inward
motion of the anterior abdominal wall during inspiration,
similar to that observed in patients with bilateral diaphragmatic paralysis [95]. This sign can be easily detected
by simple inspection, particularly in the supine position.
Some studies have suggested that thoracoabdominal asynchrony is associated with a poor short-term vital prognosis.
The use of scalene muscles during inspiration (respiratory pulse or sign of Magendie) reflects the greater recruitment
of inspiratory muscles because of a mechanical disadvan-
tage of the diaphragm due to LH [95]. This sign is usually
observed in more severe stages of COPD and is character-
ized by good interobserver variability. The pursed lip breathing is used instinctively and voluntarily by some pa-
tients with COPD in order to reduce dyspnoea [96]. Other signs for clinical detection of LH include paradoxical pulse,
evacuation of suprasternal and supraclavicular fossae during
inspiration, jugular venous filling during expiration, reduced length of palpable trachea and tracheal descent
with inspiration [97]. It should be noted that the detection
of these signs is clearly dependent on the observer.

Measurement of FRC

The methods most commonly used for lung volume mea-
urements are body plethysmography, gas dilution tech-
niques (helium dilution method and nitrogen washout method) and imaging studies (computed tomography).
However, these techniques are not interchangeable: in moderate-to-severe airflow obstruction dilution methods
tend to underestimate lung volume?? and body plethys-
ography tends to overestimate FRC. Other techniques
such as MRI, optoelectronic plethysmography, structured
light plethysmography or respiratory inductance plethys-
ography are more suitable for research tools rather than
clinical practice.

Body plethysmography is the reference technique for
the measurement of lung volume. It is less time-consuming
than the dilution techniques, and does not add much time to
that necessary for spirometry. A crucial point is the ne-
necesity to keep the panting frequency below 1 Hz during
plethysmographic measurement. The plethysmographic technique measures the thoracic gas volume (TGV), which
can overestimate the true FRC in patients with severe
airflow obstruction basically because of two mechanisms.
One occurs when abdominal gas is compressed and
decompressed in synchronous with thoracic gas, while the
other mechanism is the significant pressure losses between
alveoli and airway opening in the presence of obstructed
airways [98].

The gas dilution methods are based on the use of a tracer gas (such as helium) that is inhaled at a defined
concentration until equilibration is reached, and then measured again in expiration [99]. In normal subjects there
is good agreement between measurements using the helium dilution method (FRC_{He}) and TGV. The measured volume
takes into account the well-ventilated areas, such that
FRC_{He}, in COPD patients it can be lower than TGV because of
the effect of non-communicating airways [98]. The differ-
ence between the FRC_{He} and TGV is particularly pro-
nounced in severe emphysema. The gas dilution methods
can be used in patients who cannot get into a body plethysmograph, and in very severe (bed-ridden) or claus-
trophic patients [100].

In patients who are not able to cope with the plethys-
ographic techniques either because of their status (exacerbation of COPD) or during exercise testing, the de-
gree of LH can be determined by measuring the IC, which
only requires a spirometer. The IC is the maximal volume of
air that can be inhaled after a spontaneous expiration to
FRC. Therefore, the IC is the difference between TLC and FRC. In the absence of reliable predicted values for the IC,
the difference between predicted TLC and predicted FRC
can be used as a predicted normal for IC. In addition, IC can be
normalized for the value of TLC by means of the IC/TLC ratio. At a constant TLC, a decrease of IC represents an
increase of FRC. It has been shown that TLC remains con-
stant over short time periods and during exercise [101].
Bronchodilation studies have established that IC as a mea-
sure of hyperinflation correlates better with dyspnoea and
exercise performance than FEV_{1} [101,102]. The use of IC for
the testing of LH has two major disadvantages: firstly it
ignores the isolated increase in RV, and, on the other hand,
it is assumed that patients do not change their TLC during
an exacerbation or bronchodilator therapy.

Imaging techniques

Lung volumes can be obtained from conventional chest
radiographs. In early studies, a good correlation was found
between plethysmographic and radiographic techniques,
but radiographic techniques are time-consuming, not
standardized and are now mainly used for quantitative
purposes only in paediatric practice [103]. The most helpful
radiographic sign of LH is a flattening of the hemi-
diaphragms [104]. Other radiological signs of LH include an
increase in the retrosternal air space (measured 3 cm below
the manubrial—sternal junction) of more than 2.5 cm, an
increase in lung height and a low standing of the diaphragm
(the right dome of the diaphragm at or below the anterior
segment of the 7th rib).

Computed tomography (CT) is an important method for
assessing lung condition. Dedicated post-processing soft-
wares allow rapid reproducible measurement of thoracic
gas volume. Lung volumes determined by CT are less prone
to inaccuracies related to chest wall or image distortion.
TLC measured by plethysmography and CT usually has a
very high correlation (r > 0.9), and TLC measured by
plethysmography is greater than that measured by inspira-
atory CT (up to 1 L) [105]. The difference between
plethysmographic TLC and TLC determined by CT is
reported greatest among subjects with FEV_{1} < 30% of
predicted [106]. The limitations of the measurement of
lung volumes by CT include difficulty with maximum inspira-
tory maneuvers and breath-holding techniques during
scanning. In addition, one should keep in mind that
plethysmographic TLC as well as FRC_{He} are measured in the supine

position. Therefore, it can be predicted that plethysmographic TLC must be greater than CT-TLC [7]. This discrepancy should be even larger in obese patients.

It has been suggested that CT may help in the early diagnosis of COPD. In particular the comparison between inspiratory and expiratory images can show air trapping and help to distinguish COPD phenotypes [107] and show that small airway disease precedes emphysema [108]. Although extremely interesting and promising, this technique is probably more suited to research protocols, requiring further work for use in clinical settings.

Measurement of pulmonary hyperinflation during mechanical ventilation

Dynamic LH and PEEPi are fundamental aspects of the pathophysiology of acute respiratory failure in patients with a severe exacerbation of COPD. Hence, assessment and measurement of dLH and PEEPi is a crucial aspect in the overall clinical management of these patients [18,20,21,67]. The amount of dLH can be measured in heavily sedated or paralysed ventilator-dependent patients by allowing a complete exhalation after disconnection from the ventilator. In this condition, PEEPi can be measured by means of the end expiratory occlusion technique [72] and/ or on-line monitoring [109]. In actively breathing patients, measurement of PEEPi by means of end-expiratory occlusion is more difficult because of respiratory muscle activity [110] and may require the use of an oesophageal (and gastric) balloon [31,111,112]. This technique is more appropriate as a research tool and poorly suited to clinical practice [113]. However, the estimation of PEEPi in ventilator-dependent patients may be important to set the adequate level of PEEP or CPAP to reduce the patient’s work of breathing, to prevent patient-ventilator dysynchrony, and during weaning [112,114].

Pharmacologic treatment of pulmonary hyperinflation

Bronchodilators are the main pharmacological agents targeting LH: their primary aim is to decrease the level of airflow limitation, which represents one of the leading mechanisms of exercise limiting dLH. Since airway obstruction is also related to inflammatory changes, anti-inflammatory agents could be of some value.

The beginning of the story: short-acting bronchodilators

In 1979, Ramsdell et al. [115] demonstrated that isoproterenol (short-acting beta-agonist) produced an increase in IC even in some patients with no effect on FEV₁. The authors interpreted this finding as an indication that improvement in static lung volumes can reflect bronchodilation in the absence of improved expiratory flow. Subsequently, it was shown that, in asthmatic as well as in COPD patients, dyspnoea relief following bronchodilation was correlated with changes in IC but not FEV₁ [116,117]. The improvement in FRC after salbutamol was found to be more marked in flow-limited than in non flow-limited COPD patients [118]. In COPD, reduced levels of LH were associated with improved diaphragmatic contractility, likely related to the mechanically more favourable conformation of the diaphragm. Along the same line, Dal Vecchio et al. [28] found that fenoterol improved diaphragmatic strength in COPD patients. In parallel, O’Donnell et al. reported that exertional dyspnoea and endurance time were closely related to dLH, which was reduced by a short-acting antimuscarinic agent [119].

Short-acting bronchodilators are recommended as-needed for symptom relief in patients with COPD. For maintenance treatment of patients with moderate to very severe airflow obstruction, the arrival of long-acting bronchodilators was a significant step forward. These agents could also be useful in patients with mild airflow obstruction but significant LH during relatively low levels of exercise [58].

Long-acting beta2 adrenoreceptors (LABAs) and long-acting antimuscarinic agents (LAMAs): the story continues

The first LABAs released were formoterol and salmeterol, which both have a 12 h duration of effect. Some years later, a LAMA with 24 h duration of action, tiotropium, was marketed, followed by glycopyrronium (24 h duration of action) and aclidinium (12 h duration of action). In parallel, indacaterol, an ultra-LABA (24 h duration of action), has been made available and will be followed by several others (e.g., olodaterol, vilanterol).

All those that are already on the market have been tested regarding their effects on LH, both at rest and during exercise, as recently reviewed [120] and shown in Table 2. Figure 1 provides a typical example of the findings from these studies.

Dual bronchodilation

Several LABA þ LAMA combinations are currently being developed. Some studies have shown complementary effects on lung function and some clinical endpoints as compared to mono-bronchodilation [121]. In addition, new long-acting molecules with muscarinic antagonist and beta2 agonist properties (MABAs) are also undergoing clinical testing, with the first results showing similar levels of bronchodilation as with the association of a LABA and a LAMA [122]. Only one fully published study compared dual bronchodilation (indacaterol + glycopyrronium = QVA149) to mono-bronchodilation (tiotropium) and placebo on LH and exercise tolerance in 85 patients [123]. This was a cross-over study with each treatment period lasting 21 days. QVA149 and tiotropium improved exercise endurance time by about 1 min versus placebo (baseline endurance time: about 8 min), with no difference between the two agents. As compared to tiotropium, QVA149 had greater effects on pre- and post-exercise IC as well as on trough IC, FEV₁, and FVC.

As mentioned previously, IC has spontaneous variability, possibly due to slight spontaneous changes in FRC, particularly in COPD patients, in whom a small amount of dLH has
been inferred from measurement of PEEPi at rest. It has been suggested that improvements of IC > 10% of the baseline value exceed the spontaneous variability of the parameter [118]. However, there is neither any report nor consensus on the minimally important clinical difference (MICD) for IC, as is the case for FRV1 [124].

Anti-inflammatory agents

At least two studies have shown an effect of inhaled corticosteroids (ICS) added to LABAs on LH and exercise tolerance; one was performed with salmeterol-fluticasone (SFC), the other with formoterol-budesonide [125,126].

In both studies, the patients were randomised to receive the combination, the LABA alone or placebo. Similar results were found (although differences between SFC and salmeterol alone were not statistically tested in the corresponding study), with additional effects of the ICS on top of LABA on LH at rest and during exercise, endurance time and isotime dyspnoea ratings. These findings and the quick occurrence of ICS additional effects could relate to reciprocal modulation of the function of receptors to

Table 2

<table>
<thead>
<tr>
<th>Class</th>
<th>Agent</th>
<th>Number of studies</th>
<th>Study duration</th>
<th>Sample size</th>
<th>Significant effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta2 agonists</td>
<td>Formoterol</td>
<td>1</td>
<td>2 weeks</td>
<td>21</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Salmeterol</td>
<td>2</td>
<td>2 weeks for both</td>
<td>19 & 23</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Indacaterol</td>
<td>2</td>
<td>2 weeks & 3 weeks</td>
<td>27 & 90</td>
<td>Y</td>
</tr>
<tr>
<td>Anticholinergics</td>
<td>Tiotropium</td>
<td>3 vs. placebo</td>
<td>7-10 days, 6 weeks x 2</td>
<td>18, 187 & 261</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Aclidinium</td>
<td>1</td>
<td>vs. placebo as add-on</td>
<td>18</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Glycopyrronium</td>
<td>1</td>
<td>to formoterol</td>
<td>108</td>
<td>Y</td>
</tr>
</tbody>
</table>

Figure 1 Typical findings from studies of the effects of a bronchodilator on exercise tolerance and hyperinflation. Subjects perform constant load endurance testing at a given percentage of maximal work capacity with serial dyspnoea assessments using the Borg scale (top panel) and spirometric measurements of mobilized lung volumes (tidal volume and inspiratory capacity manoeuvres) (bottom panel); total lung capacity (TLC) is measured by body plethysmography before exercise. IRV: inspiratory reserve volume; VT: tidal volume; EELV: end-expiratory lung volume; IC: inspiratory capacity. Horizontal arrows show the effect of the bronchodilator on endurance time. Vertical red arrows show its effects on dyspnoea (top panel) and operational lung volumes (bottom panel). EELV in the Figure corresponds to FRC in the text. From Maltais et al. Chest 2005; 128: 1168 with permission. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
corticosteroids and beta2 agonists or non-genomic effects of corticosteroids.

Some studies have specifically assessed the effects of ICS (alone or in fixed-dose combinations with LABAs) formulated as extra-fine particles, hypothesizing that reaching smaller airways might help obtaining greater effects on LH and exercise tolerance. In very small studies, it was found that beclomethasone HFA and beclomethasone-formoterol in combination in extra-fine particles decreased LH and relieved symptoms in COPD patients [127,128]. The conclusions were limited by small sample sizes, and lack of placebo control in the latter study.

Roflumilast is an oral PDE4 inhibitor indicated in addition to long-acting bronchodilators for the prevention of exacerbations in patients with severe airflow obstruction, chronic bronchitis and repeated exacerbations. In one study [129], it was shown to improve IC, SpO2 and peak ventilation slightly albeit significantly during exercise, with no effect on resting LH or endurance time.

The position of theophyllines in the guidelines relates to their low benefit-risk ratio. A small study showed that theophylline improved resting gas exchange and maximal voluntary ventilation and some indices during incremental exercise testing [130]. However, in this study as in others [131] lung volumes were not assessed during exercise. A recent pilot study assessed the effect of theophylline on top of dual inhaled bronchodilation on spirometry and exercise endurance. A trend towards a positive effect on exercise tolerance was found but with no significant change in IC [132].

Comparisons between strategies

Only a few studies have directly compared the effects of these pharmacological therapeutic “strategies” (i.e., LAMA on the one hand, FDC on the other, and their association) on LH. In the study by Santus et al. [133], the acute effect of tiotropium on resting IC (but not RV) was of greater magnitude than that of budesonide/formoterol.

In conclusion, high levels of evidence regarding the effects on LH and subsequent improvement in exercise tolerance are available for inhaled bronchodilators. Inhaled bronchodilators appear to be useful tools to relieve exertional dyspnoea and improve exercise tolerance through decreasing LH in COPD patients.

Non pharmacologic treatment of pulmonary hyperinflation

Treatments that primarily decrease the respiratory rate (f) and increase tidal volume (Vf)

These treatments are pursed-lip breathing (PLB), inspiratory muscle training (IMT), peripheral muscle training and oxygen.

The mechanisms through which PLB reduces dyspnoea are: a) decreasing Ti/Ttot, thus increasing the expiratory duration. b) counterbalance of intrinsic PEEP. PLB produces a substantial increase in Vf along with a reduced f and minute ventilation [134]. This technique increases expiratory airways pressure, reducing expiratory airway collapse, but, at the same time, impairs the rate of expiratory flow. Patients that did not instinctively adopt PLB did not assume it naturally for long periods of time even when properly taught [135]. PLB was shown to improve the rate of dyspnoea recovery to basal levels [136], and to reduce f in patients with COPD during exercise on cycle-ergometer.

IMT is a useful technique in PR, associated with whole body exercise training (ET). FRC does not change through IMT [137]. IMT might be useful when added to whole-body ET in individuals with marked inspiratory muscle weakness or those unable to cycle or walk because of comorbid conditions [138]. Exercise training lowers ventilatory demand, resulting in a lower frequency of breathing at a given level of exercise. With a longer expiratory time there is less dynamic dLH and therefore less dyspnoea [139,140]. Many studies have shown that leg training decreases f during exercise and increases IC [135,141–144]. Optimization of bronchodilator therapy before ET in patients with airflow limitation is generally routine in PR [138].

Several observations in normoxemic COPD patients have demonstrated the favourable effect of oxygen supplementation during exercise [145,146], reducing f and dyspnoea. The improvement in endurance time was correlated with a decrease in FRC [147]. In a group of 18 severe COPD patients, oxygen reduced the degree of dLH during recovery from exercise [137]. The effects of supplemental oxygen on dLH show a considerable inter-patient variability with a reduction of LH in a subset of patients, in general with greater baseline airflow obstruction, greater ventilatory constraints during exercise and poorer exercise performance. Oxygen also induces dyspnoea relief due to reduced central neural drive and improved oxidative capacity of the active peripheral muscles.

The current evidence does not support the widespread use of oxygen supplementation during ET in COPD with dLH, except in patients already receiving long-term oxygen therapy [138].

Treatments that primarily reduce airflow limitation

There are two options to reduce airflow limitation: heliox and increasing elastic recoil.

Heliox (heliox/oxygen ratio 80:20) decreases turbulent flow in large airways and at branch points in the tracheobronchial tree. Exercise endurance and peak ventilation time significantly increase with heliox, with a reduction in dLH and dyspnoea at isotime, significantly correlated with the increase in IC induced by heliox [147]. The use of this technique as an adjunct in PR exercise training remains to be established [137].

The second strategy is to improve lung elastic recoil. Lung volume reduction surgery (LVRS) refers to elimination of emphysematous hyperinflated portions of the lung, which allows the remaining pulmonary parenchyma and the respiratory muscles to function more effectively. Several randomised trials have compared LVRS with optimal medical treatment providing convincing evidence that this procedure improves respiratory function, exercise capacity, and dyspnoea in selected patients with advanced emphysema to a greater extent than optimal medical therapy...
spirometric values. In practice, most therapeutic decisions are only based on relevant aspects in the functional assessment of the patient, particularly when there are discrepancies between clinical features and impairment in airflow obstruction. Most COPD clinical documents and guidelines currently base their recommendations on FEV₁, symptoms and exacerbations. Although the measurement of lung volumes is a standard procedure in the presence of obstruction. Recently, a remarkable interest has been addressed to the IC since it is considered a comprehensive method to evaluate exercise-induced hyperinflation (dLH). Moreover, it has been described that it can predict dyspnoea and exercise limitation better than FEV₁, particularly when there are discrepancies between clinical features and impairment in airflow obstruction.

Special attention should be devoted to ventilator-dependent COPD patients in the critical care settings. In these conditions, assessment of dLH, and PEEPi, is crucial for appropriate setting of the ventilator pattern, prevention of patient-ventilator disynchrony and successful weaning [167].

Conflict of interest

Andrea Rossi has received personal compensations for lectures and support for travelling to congresses from [148]. By far, the largest clinical trial was the NETT [20], in which only the subset of patients with upper lobe predominant emphysema and low exercise capacity (24%) showed a significant reduction in total mortality with surgery (7% vs. 15% per year, risk ratio 0.47) [149]. Endobronchial valve placement can improve lung volumes and gas transfer in some selected COPD patients and prolong exercise time by reducing FRC [150].

Bullectomy can also contribute to reducing dLH; the most common indication for bullectomy is severe dyspnoea in the setting of a large bulla occupying at least 30–50% of the hemithorax. Another indication is a history of recurrent pneumothorax.

Treatments aimed to relieve the inspiratory threshold load

Inspiratory threshold load can be relieved by pursed-lip breathing (PLB) and positive end-expiratory pressure. The effects of PLB are summarized above.

In patients with flow limitation by dynamic airway collapse, small amounts of external PEEP or CPAP (continuous positive airway pressure) can be beneficial since intrinsic PEEP can account for about 1/3 of the total work of breathing [151]. A meta-analysis of 7 studies has shown a modest beneficial effect of ventilatory support on exercise tolerance [152]. CPAP unloads inspiratory muscles from the inspiratory threshold load imposed by intrinsic PEEP [144,151,153]. Inspiratory pressure support (IPS), a form of pressure-targeted mechanical ventilation in which each breath is patient triggered and supported has been shown to improve exercise tolerance [140,152–157] and reduce lactate production [158]. Proportional assisted ventilation (PAV) has also been shown to increase exercise tolerance [134,159]. The combination of PEEP/CPAP and IPS [160] or PAV [161] decreases the inspiratory workload in mechanically ventilated patients.

The application of low levels of CPAP (much lower than that set for obstructive sleep apnoea) during exercise can improve exercise tolerance by reducing the inspiratory threshold load without changing FRC [151]. BiPAP can decrease both the inspiratory workload and FRC thorough a modification of the breathing pattern [162].

Overview of clinical importance of lung hyperinflation

Most COPD clinical documents and guidelines currently base their recommendations on FEV₁, symptoms and exacerbations. Although the measurement of lung volumes is a relevant aspect in the functional assessment of the patient, in practice, most therapeutic decisions are only based on spirometric values.

By and large, the combination of static and dynamic LH increases as COPD worsens, but dLH occurs independently of FEV₁ values [25] during daily real life activities [54], being the main limiting factor in physical activity regardless of classification with GOLD or BODE [93]. Since at present the worth and impact of its measurement remain poorly defined, three key points should be addressed to include this testing in clinical practice. To whom: We now have enough information to endorse the importance of measuring the degree of LH for enhancing decision making in patient treatment. Hyperinflation significantly contributes to dyspnoea and exercise limitation. Furthermore, in severe cases, LH can seriously stress cardiopulmonary reserve, mainly on effort or under increased ventilatory demand such as in exacerbations [163]. However, as in other aspects of COPD, LH is not uniform in all patients, so that detection of the presence of LH can help to better define the clinical characterisation (non-hyperinflator and hyperinflator), thereby helping to obtain treatment more adapted to patient characteristics [164]. In clinical practice, some patients might benefit from personalized treatment with bronchodilators or supplemental oxygen, which reduces ventilatory demand and decreases the degree of dLH at any external workload. For this, measurement of LH should be recommended in all patients with dyspnoea in their daily life activities and in patients with frequent exacerbations, regardless of the values of FEV₁.

How: LH must be determined by measurement of lung volumes and it can be suspected by a reduction of IC. In 2005 a joint committee of the ATS/ERS published comprehensive guidelines for measuring lung volumes [165]. Although no single methodology was specifically recommended, in clinical practice body plethysmography is the reference method. It is more accurate than gas dilution methods in the presence of obstruction. Recently, a remarkable interest has been addressed to the IC since it is the only method available to evaluate exercise induced dLH. Moreover, it has been described that it can predict increased and overall mortality when the IC/TLC index falls to less than 25% [166]. Therefore IC is useful not only to assess changes in gas trapping for various therapies but is a prognostic factor for survival. Despite its simplicity it should be borne in mind that IC is an imperfect surrogate of body plethysmography for evaluating the reversibility of LH with bronchodilators [100].

When: In general, LH increases as airway obstruction worsens. However, there is not a linear relationship between them. At any stage of the disease, an improvement in LH can be observed after bronchodilators (measured by FRC or estimated by IC), which exceed that of the FEV₁, particularly in flow-limited patients [118]. These changes are related to improvement in symptoms and exercise limitation [49]. For this reason LH should be measured at any degree of the disease if the result can assist in making therapeutic decisions because it provides more useful information pertaining to dyspnoea and exercise tolerance than FEV₁, particularly when there are discrepancies between clinical features and impairment in airflow obstruction.

Special attention should be devoted to ventilator-dependent COPD patients in the critical care settings. In these conditions, assessment of dLH, and PEEPi, is crucial for appropriate setting of the ventilator pattern, prevention of patient-ventilator disynchrony and successful weaning [167].
Boehringer Ingelheim, Novartis, GlaxoSmithKlein, AstraZeneca, Chiesi Italia, Nycomed/Takeda, and support for research from GlaxoSmithKline, Novartis Italia, Chiesi Italia.

Marc Miravitlles has received speaker fees from Almirall, Boehringer Ingelheim, Pfizer, AstraZeneca, Chiesi, Esteve, GlaxoSmithKline, Menarini, Novartis, Talecris-Grifols, Takeda-Nycomed, and Novartis, and consulting fees from Almirall, Boehringer Ingelheim, Pfizer, GlaxoSmithKline, Gebro Pharma, Medimmune, Novartis, Talecris-Grifols and Takeda-Nycomed.

Zaurbek Aisanov has received speaker fees from AstraZeneca, Boehringer Ingelheim, Chiesi, GlaxoSmithKline, Merck, Novartis, Sanofi, Takeda-Nycomed, Teva, Zambon, and consulting fees from AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Novartis, Takeda-Nycomed, Teva.

Nicolas Roche has received over the past 5 years fees for speaking, organising education, participation in advisory boards or consulting from Almirall, Nycomed-Takeda, AstraZeneca, Boehringer Ingelheim, Chiesi, GlaxoSmithKline, MEDA, MSD-Chibret, Mundipharma, Novartis, Pfizer, Teva; research grants from Novartis, Nycomed, Boehringer Ingelheim and Pfizer.

Sergey Avdeev has received speaker fees from Boehringer Ingelheim, AstraZeneca, Takeda-Nycomed, GlaxoSmithKline, Novartis, Chiesi, Pfizer, Bayer, Zambon, and consulting fees from AstraZeneca, Boehringer Ingelheim, Pfizer, Novartis, and Takeda-Nycomed.

Giuseppe Di Maria has received personal consulting fees from Boehringer Ingelheim Italy and GlaxoSmithKline, and has been granted for institutional research from Boehringer Ingelheim in the past three years.

Thomas Similowski reports personal fees from AstraZeneca France and Corporate, personal fees and non-financial support from Boehringer Ingelheim France, grants, personal fees, non-financial support from Novartis France, personal fees from GlaxoSmithKline France and Chiesi France, non-financial support from Almirall France, grants, personal fees from Pierre Fabre, Medimmune, Menarini, and Pfizer France, all outside the submitted work.

Claudio F. Donner has received speaker fees and support for participating to Congresses from Almirall, Boehringer Ingelheim, GlaxoSmithKline, Novartis and TEVA and consulting fees from Boehringer Ingelheim, GlaxoSmithKline, Novartis and Pfizer.

Jose Luis Izquierdo has received speaker fees from Almirall, AstraZeneca, Bayer, Boehringer Ingelheim, Chiesi, Esteve, GlaxoSmithKline, Menarini, Pfizer, Talecris-Grifols and Takeda-Nycomed, and consulting fees from Almirall, AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Pfizer, and Takeda-Nycomed.

Henrik Watz is an employee of the Pulmonary Research Institute. His institution received reimbursement from compensation received for participation in clinical studies from Almirall, AstraZeneca, AB2BIO, Bayer, Boehringer, GlaxoSmithKline, Intermune, Merck, Novartis, Revotar, Roche, Takeda. Henrik Watz received speaking honoraries, honoraries for participation in advisory board meetings, travel support for attending congresses in respiratory medicine, and unrestricted research grants from Almirall, BerlinChemie, Boehringer, Chiesi, AstraZeneca, GlaxoSmithKline, Merck, Novartis, Takeda.

Heinrich Worth received speaking honoraries, honoraries for participation in advisory board meetings, travel support for attending congresses in respiratory medicine, and unrestricted research grants from Almirall, BerlinChemie, Boehringer, Bionorica, AstraZeneca, Novartis, Takeda.

Acknowledgements

This publication has been supported by an unrestricted educational grant from Novartis. The sponsor had no role in the selection of authors, topics, discussions and writing of the manuscript. The manuscript has been written by the authors without any external support.

References

[14] De Troyer A, Pride NB. The chest wall and the respiratory muscles in COPD. In: Roussos Ch, editor. The thorax, part C: Assessment and therapeutic implications of LH in COPD 797

Hannikin JD, van Helvoort HA, Dekhuijzen PN, Heijdra YF. Dynamic hyperinflation during daily activities does COPD global initiative for chronic obstructive lung disease stage matter? Chest 2010;137:1116.

Pepe PE, Marini JJ. Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction. Am Rev Respir Dis 1982;126:166–70.

Ruppel GL. What is the clinical value of lung volumes? Respir Care 2012;57:26–38.

